Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Test Anal ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643973

RESUMEN

The study of intact phase II metabolites of endogenous anabolic androgenic steroids (EAAS) gives important information about metabolism and has the potential to improve the detection of doping with testosterone. For analysis with liquid chromatography-mass spectrometry (LC-MS), chemical derivatization at the steroid moiety is a technique to improve the positive ionization efficiency of glucuronidated/sulfated EAAS under collision-induced dissociation (CID) conditions. However, regarding the chromatographic performance, there are still challenges to address, for example, poor peak shape, which is mainly caused by nondefined adsorption in the chromatographic system. Here, we show a novel derivatization technique for the analysis of selected phase II metabolites of EAAS, where the acidic moiety of the glucuronide/sulfate is methylated with different methylation reagents to reduce nondefined adsorption. The methylation reagent trimethylsilyl-diazomethane (TMSD) was preferred over the other tested reagents methyl iodide (MeI) and dimethyl sulfate (DMS). Glucuronidated and sulfated testosterone and epitestosterone were methylated, and their chromatographic performance and CID ion mass spectra obtained in positive ionization mode were investigated. The peak width and peak height were significantly improved for all substances. Methylated testosterone sulfate showed the best results with a 3.5 times narrower peak and 14 times increased intensity compared with underivatized testosterone sulfate. Furthermore, CID ion mass spectra obtained in positive ionization mode showed product ions characteristically for the steroidal backbone for all substances. This preliminary study shows the potential of methylation as a supplementary derivatization technique, which can assist in the development of more sensitive methods due to the improvements in method performance.

2.
Drug Test Anal ; 14(11-12): 1871-1876, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35128824

RESUMEN

The urinary steroid profile established for the monitoring of eventual testosterone or testosterone precursor application by athletes includes concentrations and ratios of various endogenously produced steroidal hormones and metabolites. Due to enzymatic activities in urine specimens, the concentrations of these endogenous steroids and consequently their ratios may alter, leading to potential misinterpretation of analytical results. Microbiological contamination in athletes' urine samples can occur due to urinary tract infections or due to contamination by the non-sterile sample collection conditions. Depending on the duration of transportation of urine samples, the transport and storage conditions may favour microorganisms' growth, and therefore, the enzymatic activity can be accelerated. Degradation effects on endogenous steroids caused by microorganisms have been observed, such as hydrolysis of steroid conjugates, increase of testosterone in the free fraction or modification of the steroid structure by oxidoreductive reactions. The World Anti-Doping Agency (WADA) implemented criteria to check for signs of microbial degradation in a technical document dealing with the detection, analysis and reporting of endogenous androgenic anabolic steroids (TD EAAS) in urine samples. During the endogenous steroid profile confirmation procedures (CPs) of the WADA accredited Seibersdorf Laboratory, significant differences in the concentrations of markers of the steroid profile were observed compared to the initial testing procedures (ITPs). The changes in concentrations of the urinary steroid profile were attributed to the reduction of the 17-keto group to a 17ß-hydroxy group caused by increased enzymatic activity during the hydrolysis step. In order to monitor the 17-keto reduction activity in athletes' urine specimens, possible marker substances containing a 17-keto group were synthesised and added in the internal standards mixture (ISTD) of the ITP. The presence of the reduced 17ß-hydroxy form of the marker substance indicated enzymatic activity leading to 17-keto reduction reactions. The substance 3ß-ethoxy-5α-androstane-17-one was defined to be suitable to indicate 17-keto reduction reactions occurring during hydrolysis carried out at moderate temperatures.


Asunto(s)
Doping en los Deportes , Esteroides , Humanos , Esteroides/orina , Congéneres de la Testosterona , Testosterona/orina , Atletas , Estándares de Referencia , Detección de Abuso de Sustancias/métodos
3.
Steroids ; 164: 108716, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32860782

RESUMEN

We herein report the synthesis of the long-term metabolites "M4" (IUPAC: 4-chloro-17-hydroxymethyl-17-methyl-18-norandrosta-4,13-dien-3-ol) of dehydrochloromethyl-testosterone (DHCMT, Oral Turinabol) and "Oxy M9" (4-hydroxy-17ß-hydroxymethyl-17α-methyl-18-norandrosta-4,13-dien-3-one) of oxymesterone (Oranabol). Both compounds were derived from a common synthetic route starting from dehydroepiandrosterone acetate. Four different stereoisomers were evaluated for metabolite M4. The previously assigned structure could be corrected regarding the C-3 and C-17 stereocenters.


Asunto(s)
Androstenodioles/metabolismo , Testosterona/análogos & derivados , Humanos , Estructura Molecular , Análisis Espectral/métodos , Estereoisomerismo , Testosterona/química , Testosterona/metabolismo
5.
Drug Test Anal ; 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570240

RESUMEN

In doping control analysis, the characterization of urinary steroid metabolites is of high interest for a targeted and long-term detection of prohibited anabolic androgenic steroids (AAS). In this work, the structure of a long-term metabolite of dehydrochloromethyltestosterone (DHCMT) was elucidated. Altogether, 8 possible metabolites with a 17α-methyl-17ß-hydroxymethyl - structures were synthesized and compared to a major DHCMT long-term metabolite detected in reference urine excretion samples. The confirmed structure of the metabolite was 4α-chloro-18-nor-17ß-hydroxymethyl-17α-methyl-5α-androst-13-en-3α-ol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...